CHEMISTRY PREVIOUS YEAR QUESTIONS - TOPICWISE

SOME BASIC CONCEPT OF CHEMISTRY C1101
 2019

1. The number of moles of hydrogen molecules required to produce 20 moles of ammonia through Haber's process is:
(1) 10
(2) 20
(3) 30
(4) 40

Answer: (3)

2020

2. One mole of carbon atom weighs 12 g , the number of atoms in it is equal to, (Mass of carbon-12 is $1.9926 \times 10^{-23} \mathrm{~g}$)
(1) 6.022×10^{23}
(2) 1.2×10^{23}
(3) 6.022×10^{22}
(4) 12×10^{22}

Answer: (1)

2022

3. What mass of 95% pure CaCO_{3} will be required to neutralise 50 mL of 0.5 M HCl solution according to the following reaction?
$\mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+\mathrm{CO}_{2(\mathrm{~g})}+$ $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{i})}$
[Calculate upto second place of decimal point]
(1) 3.65 g
(2) 9.50 g
(3) 1.25 g
(4) 1.32 g

Answer: (4)

STRUCTURE OF ATOM - C1102 2017

4. Which one is the wrong statement?
(1) The energy of 2 s orbital is less than the energy of $2 p$ orbital in case of Hydrogen like atoms.
(2) de-Broglie's wavelength is given by $\lambda=\frac{h}{m v}$, where $\mathrm{m}=$ mass of the particle, $\mathrm{v}=$ group velocity of the particle
(3) The uncertainty principle is $\Delta \mathrm{E} \times \Delta \mathrm{t} \geq \frac{h}{4 \pi}$
(4) Half-filled and fully filled orbitals have greater stability due to greater exchange energy, greater symmetry and more balanced arrangement
Answer: (1)

2018

5. Which one is a wrong statement?
(1) The electronic configuration of N atom is

(2) An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbers.
(3) Total orbital angular momentum of electron in 's' orbital is equal to zero.
(4) The value of m for $d_{z} 2$ is zero.

Answer: (1)
6. A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be
(1) 2.8
(2) 3.0
(3) 1.4
(4) 4.4

Answer : (1)

2019

7. Which of the following series of transitions in the spectrum of hydrogen atom falls in visible region?
(1) Lyman series
(2) Balmer series
(3) Paschen series
(4) Bracket series

Answer: (2)
2020
8. The number of angular nodes and radial nodes in 3 s orbital are
(1) 0 and 1 , respectively
(2) 0 and 2 , respectively
(3) 1 and 0 , respectively
(4) 3 and 0 , respectively

Answer: (2)

Academy for NEET Coaching
(Unit of VETRII IAS STUDY CIRCLE)
CHENNAI | MADURAI

2021
9. A particular station of All India Radio, New Delhi broadcasts on a frequency of $1,368 \mathrm{kHz}$ (kilohertz). The wavelength of the electromagnetic radiation emitted by the transmitter is: [speed of light $\mathrm{c}=3.0 \times 10^{8} \mathrm{~ms}^{-1}$]
(1) 21.92 cm
(2) 219.3 m
(3) 219.2 m
(4) 2192 m

Answer: (2)
10. If radius of second Bohr orbit of the $\mathrm{He}+$ ion is 105.8 pm, what is the radius of third Bohr orbit of Li^{2+} ion?
(1) 1.587 pm
(2) $158.7 \AA$
(3) 158.7 pm
(4) 15.87 pm

Answer: (3)

Classification of Elements and Periodicity in Prperties- C1103

2020

11. The correct structure of tribromooctaoxide is :

Answer: (1)
12. Match the element in column I with that in column II.
Column I
(a) Copper
(b) Fluorine
(i) Non-metal
(c) Silicon
(ii) Transition Metal
(d) Cerium
(iii) Lanthanoid
(iv) Metalloid

Column II

Identify the correct match :
(1) (a)-(i) (b)-(ii) (c)-(iii) (d)-(iv)
(2) (a)-(ii) (b)-(iv) (c)-(i) (d)-(iii)
(3) (a)-(ii) (b)-(i) (c)-(iv) (d)-(iii)
(4) (a)-(iv) (b)-(iii) (c)-(i) (d)-(ii)

Answer: (3)

2022

13. The IUPAC name of an element with atomic number 119 is
(1) unununnium
(2) ununoctium
(3) ununennium
(4) unnilennium

Answer: (3)
14. The IUPAC name of the complex-
$\left[\mathrm{Ag}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]\right.$ is:
(1) dicyanidosilver(I) diaquaargentate(I)
(2) diaquasilver(I) dicyanidoargentate(I)
(3) dicyanidosilver(II) diaquaargentate(II)
(4) diaquasilver(II) dicyanidoargentate(II)

Answer: (2)

CHEMICAL BONDING AND MOLECULAR
 STRUCTURE - C1104

2017

15. Name the gas that can readily decolourises acidified KMnO_{4} solution:
(1) $\mathrm{P}_{2} \mathrm{O}_{5}$
(2) CO_{2}
(3) SO_{2}
(4) NO_{2}

Answer: (3)
16. Which one of the following pairs of species have the same bond order?
(1) $\mathrm{N}_{2}, \mathrm{O}_{2}{ }^{-}$
(2) CO, NO
(3) $\mathrm{O}_{2}, \mathrm{NO}^{+}$
(4) $\mathrm{CN}^{-}, \mathrm{CO}$

Answer: (4)
17. Which of the following molecules represents the order of hybridisation $s p^{2}, s p^{2}, s p, s p$ from left to right atoms?
(1) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(2) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C}=\mathrm{CH}$
(3) $\mathrm{HC}=\mathrm{C}-\mathrm{C}=\mathrm{CH}$
(4) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$

Answer: (2)

2018

18. Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is $1 s^{2} 2 s^{2} 2 p^{3}$, the simplest formula for this compound is
(1) $M g_{2} X$
(2) $M g X_{2}$
(3) $M g_{2} X_{3}$
(4) $M g_{3} X_{2}$

Answer: (2)
19. Consider the following species:
$\mathrm{CN}^{+}, \mathrm{CN}^{-}, \mathrm{NO}$ and CN
Which one of these will have the highest bond order?
(1) CN^{+}
(2) CN^{-}
(3) NO
(4) CN

Answer: (2)
20. In which of the following forms is iron absorbed by plants?
(1) Free element
(2) Ferrous
(3) Ferric
(4) Both ferric and ferrous

Answer : (3)
21. Among $\mathrm{CaH} 2, \mathrm{BeH} 2, \mathrm{BaH} 2$, the order of ionic character is
(1) $\mathrm{BeH}_{2}<\mathrm{BaH}_{2}<\mathrm{CaH}_{2}$
(2) $\mathrm{CaH}_{2}<\mathrm{BeH}_{2}<\mathrm{BaH}_{2}$
(3) $\mathrm{BeH}_{2}<\mathrm{CaH}_{2}<\mathrm{BaH}_{2}$
(4) $\mathrm{BaH}_{2}<\mathrm{BeH}_{2}<\mathrm{CaH}_{2}$

Answer: (3)

2019
22. $4 d, 5 p, 5 f$ and $6 p$ orbitals are arranged in the order of decreasing energy. The correct option is:
(1) $5 f>6 p>5 p>4 d$
(2) $6 p>5 f>5 p>4 d$
(3) $6 p>5 f>4 d>5 p$
(4) $5 f>6 p>4 d>5 p$

Answer: (1)
23. Which of the following is incorrect statement?
(1) PbF_{4} is covalent in nature
(2) SiCl_{4} is easily hydrolysed
(3) $\mathrm{GeX}_{4}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ is more stable than GeX_{2}
(4) SnF_{4} is ionic in nature

Answer: (1)
24. Which of the following diatomic molecular species has only π bonds according to Molecular Orbital Theory?
(1) O_{2}
(2) N_{2}
(3) C_{2}
(4) Be_{2}

Answer: (3)

2020

25. Match the coordination number and type of hybridisation with distribution of hybrid orbitals in space based on Valence bond theory. Coordination number and \mid Distribution of hybrid type of hybridisation
(a) $4, \mathrm{dsp}^{2}$
(b) $4, \mathrm{dsp}^{2}$
(c) $5, \mathrm{sp}^{3} \mathrm{~d}$
(d) $6, d^{2} \mathrm{sp}^{3}$
orbitals in space
(i) trigonal bipyramidal
(ii) octahedral
(iii) tetrahedral
(iv) square planar

Select the correct option :
(1) (a)-(iii) (b)-(i) (c)-(iv) (d)-(ii)
(2) (a)-(ii) (b)-(iii) (c)-(iv) (d)-(i)
(3) (a)-(iii) (b)-(iv) (c)-(i) (d)-(ii)
(4) (a)-(iv) (b)-(i) (c)-(ii) (d)-(iii)

Answer (3)

VETRII NEET GATEWAY

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI | MADURAI

26. The potential energy (y) curve for H_{2} formation as a function of internuclear distance (x) of the H atoms is shown below.

The bond energy of H_{2} is
(1) $(c-a)$
(2) $(b-a)$
(3) $\frac{(c-a)}{2}$
(4) $\frac{(b-a)}{2}$

Answer: (2)
27. Among the compounds shown below which one revealed a linear structure?
(1) $\mathrm{N}_{2} \mathrm{O}$
(2) NO_{2}
(3) HOCl
(4) O_{3}

Answer:(1)
28. Identify the wrongly match pair.

Molecule
Shape or geometry of molecule
(1) NH_{3}
Trigonal pyramidal
(2) PCl_{5}
Trigonal planar
(3) SF_{6}
Octahedral
(4) BeCl_{2}
Linear

Answer:(2)

2021

29. BF_{3} is planar and electron deficient compound. Hybridization and number of electrons around the central atom, respectively are:
(1) sp^{2} and 8
(2) sp^{3} and 4
(3) sp^{3} and 6
(4) sp^{2} and 6

Answer : (4)
30. Match List - I with List - II.

List - I
List - II
(a) PCl_{5}
(i) Square pyramidal
(b) SF_{6}
(ii) Trigonal planar
(c) BrF_{5}
(iii) Octahedral
(d) BF_{3}
(iv) Trigonal bipyramidal

Choose the correct answer from the options given below:
(1) (a) - (iv), (b) - (iii), (c) - (ii), (d) - (i)
(2) (a) - (iv), (b) - (iii), (c) - (i), (d) - (ii)
(3) (a) - (ii), (b) - (iii), (c) - (iv), (d) - (i)
(4) (a) - (iii), (b) - (i), (c) - (iv), (d) - (ii)

Answer: (2)
31. Which of the following molecules is non-polar in nature?
(1) NO_{2}
(2) POCl_{3}
(3) $\mathrm{CH}_{2} \mathrm{O}$
(4) SbCl_{5}

Answer: (4)
32. From the following pairs of ions which one is not an iso-electronic pair?
(1) $\mathrm{Fe}^{2+}, \mathrm{Mn}^{2+}$
(2) $\mathrm{O}^{2-}, \mathrm{F}^{-}$
(3) $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}$
(4) $\mathrm{Mn}^{2+}, \mathrm{Fe}^{3+}$

Answer: (1)

2022

33. Amongst the following which one will have maximum 'lone pair - lone pair' electron repulsions?
(1) SF_{4}
(2) XeF_{2}
(3) ClF_{3}
(4) IF_{5}

Answer:(2)
34. Which amongst the following is incorrect statement?
(1) H_{2}^{+}ion has one electron
(2) O_{2}^{+}ion is diamagnetic
(3) The bond orders of $\mathrm{O}_{2}^{+}, \mathrm{O}_{2}, \mathrm{O}_{2}^{-}$and O_{2}^{2-} are
2.5, 2, 1.5 and 1 , respectively
(4) C_{2} molecule has four electrons in its two degenerates π molecular orbitals
Answer:(2)

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI | MADURAI

States of Matter: Gases and Liquids - C1105 2017
35. A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50 L . The change in internal energy $\Delta \mathrm{U}$ of the gas in joules will be
(1) +505 J
(2) 1136.25 J
(3) -500 J
(4) -505 J

Answer:(4)

2018

36. The correction factor 'a' to the ideal gas equation corresponds to
(1) electric field present between the gas molecules
(2) volume of the gas molecules
(3) density of the gas molecules
(4) forces of attraction between the gas molecules

Answer: (4)
37. Given van der Waals constant for $\mathrm{NH}_{3}, \mathrm{H}_{2}, \mathrm{O}_{2}$ and CO_{2} are respectively 4.17, $0.244,1.36$ and 3.59 , which one of the following gases is most easily liquefied?
(1) O_{2}
(2) H_{2}
(3) NH_{3}
(4) CO_{2}

Answer: (3)

2019

38. A gas at 350 K and 15 bar has molar volume 20 percent smaller than that for an ideal gas under the same conditions. The correct option about the gas and its compressibility factor (Z) in:
(1) $Z>1$ and attractive forces are dominant
(2) $Z>1$ and repulsive forces are dominant
(3) $Z<1$ and attractive forces are dominant
(4) $Z<1$ and repulsive forces are dominant

Answer: (3)

2020
39. The minimum pressure required to compress $600 \mathrm{dm}^{3}$ of a gas at 1 bar to $150 \mathrm{dm}^{3}$ at $40^{\circ} \mathrm{C}$ is
(1) 2.5 bar
(2) 4.0 bar
(3) 0.2 bar
(4) 1.0 bar

Answer:(2)

2021

40. Choose the correct option for graphical representation of Boyle's law, which shows a graph of pressure vs. volume of a gas at different temperatures:
(1)

(2)
(3)

(4)

Answer: (1)
41. Choose the correct option for the total pressure (in atm.) in a mixture of $4 \mathrm{~g} \mathrm{O}_{2}$ and $2 \mathrm{~g} \mathrm{H}_{2}$ confined in a total volume of one litre at $0^{\circ} \mathrm{C}$ is:
[Given $\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, \mathrm{~T}=273 \mathrm{~K}$]
(1) 26.02
(2) 2.518
(3) 2.602
(4) 25.18

Answer: (4)

VETRII NEET GATEWAY

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI \| MADURAI

2022

42. Which one is not correct mathematical equation for Dalton's Law of partial pressure? Here p = total pressure of gaseous mixture
(1) $p_{i}=X_{i p}$, where
$\mathrm{p}_{\mathrm{i}}=$ partial pressure of f^{th} gas
$\mathrm{X}_{\mathrm{i}}=$ mole fraction of $\mathrm{ith}^{\mathrm{th}}$ gas in gaseous mixture
(2) $\mathrm{p}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}} \mathrm{p}_{i}^{o}$, where $\mathrm{X}_{\mathrm{i}}=$ mole fraction of $\mathrm{ith}^{\text {th }}$ gas ingaseous mixture $p_{i}^{o}=$ pressure of $\mathrm{i}^{\text {it }}$ in pure state
(3) $p=p_{1}+p_{2}+p_{3}$
(4) $\mathrm{p}=\mathrm{n}_{1} \frac{R T}{V}+\mathrm{n}_{2} \frac{R T}{V}+\mathrm{n}_{3} \frac{R T}{V}$

Answer:(2)
43. A 10.0 L flask contains 64 g of oxygen at $27^{\circ} \mathrm{C}$. (Assume O 2 gas is behaving ideally). The pressure inside the flask in bar is (Given $\mathrm{R}=$ $0.0831 \mathrm{~L} \mathrm{bar} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$)
(1) 49.8
(2) 4.9
(3) 2.5
(4) 498.6

Answer:(2)
44. Copper crystallises in fcc unit cell with cell edge length of $3.608 \times 10^{-8} \mathrm{~cm}$. The density of copper is $8.92 \mathrm{~g} \mathrm{~cm}^{-3}$. Calculate the atomic mass of copper.
(1) 60 u
(2) 65 u
(3) 63.1 u
(4) 31.55 u

Answer:(3)

Thermodynamics - C1106
2017
45. A 20 litre container at 400 K contains $\mathrm{CO}_{2}(\mathrm{~g})$ at pressure 0.4 atm and an excess of SrO (neglect the volume of solid SrO). The volume of the containers is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of CO_{2} attains its maximum value, will
be (Given that: $\mathrm{SrCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{SrO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) . \mathrm{K}_{\mathrm{p}}$ $=1.6 \mathrm{~atm}$)
(1) 2 litre
(2) 5 litre
(3) 10 litre
(4) 4 litre

Answer:(2)
46. For a given reaction, $\Delta \mathrm{H}=35.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{S}$ $=83.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The reaction is spontaneous at : (Assume that $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ do not vary with temperature)
(1) $\mathrm{T}>298 \mathrm{~K}$
(2) $\mathrm{T}<425 \mathrm{~K}$
(3) $\mathrm{T}>425 \mathrm{~K}$
(4) All temperatures

Answer: (3)
47. The bond dissociation energies of X_{2}, Y_{2} and $X Y$ are in the ratio of $1: 0.5: 1$. AH for the formation of $X Y$ is $-200 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond dissociation energy of X_{2} will he
(1) $800 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3) $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4) $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: (3)

2019

48. Under isothermal condition, a gas at 300 K expands from 0.1 L to 0.25 L against a constant external pressure of 2 bar . The work done by the gas is: [Given that 1 L bar - 100 J]
(1) -30 J
(2) 5 kJ
(3) 25 J
(4) 30 J

Answer: (1)
49. In which case change in entropy is negative?
(1) Evaporation of water
(2) Expansion of a gas at constant temperature
(3) Sublimation of solid to gas
(4) $2 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})$

Answer: (4)

VETRII NEET GATEWAY

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI | MADURAI

2020

50. At standard conditions, if the change in the enthalpy for the following reaction is -109 kJ $\mathrm{mol}^{-1} . \mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HBr}_{(\mathrm{g})}$
Given that bond energy of H_{2} and Br_{2} is 435 kJ mol^{-1} and $192 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively, what is the bond energy (in kJ mol-1) of HBr ?
(1) 259
(2) 368
(3) 736
(4) 518

Answer:(2)
51. If for a certain reaction $\Delta_{r} \mathrm{H}$ is $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 450 K , the value of $\Delta_{r} \mathrm{~S}$ (in JK-1 mol^{-1}) for which the same reaction will be spontaneous at the same temperature is
(1) -70
(2) 70
(3) -33
(4) 33

Answer:(2)

2021

52. Which one among the following is the correct option for right relationship between C_{p} and C_{v} for one mole of ideal gas?
(1) $C_{v}=R C_{p}$
(2) $C_{p}+C_{v}=R$
(3) $C_{p}-C_{v}=R$
(4) $\mathrm{C}_{\mathrm{p}}=\mathrm{RC}_{v}$

Answer: (3)
53. For irreversible expansion of an ideal gas under isothermal condition, the correct option is:
(1) $\Delta \mathrm{U} \neq 0, \Delta \mathrm{~S}_{\text {total }}=0$
(2) $\Delta \mathrm{U}=0, \Delta \mathrm{~S}_{\text {total }}=0$
(3) $\Delta \mathrm{U} \neq 0, \Delta \mathrm{~S}_{\text {total }} \neq 0$
(4) $\Delta \mathrm{U}=0, \Delta \mathrm{~S}_{\text {total }} \neq 0$

Answer: (2)

2022

54. Which of the following $p-V$ curve represents maximum work done?
(1)

(2) $\underbrace{\mathrm{p}^{\text {Isothermal }}}_{\mathrm{V}}$
(3)

Answer: (4)

EQUILIBRIUM - C1107
2017
55. The equilibrium constants of the following are:
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} \mathrm{~K}_{1}$
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{OK}_{3}$
The equilibrium constant (K) of the reaction
$2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \stackrel{\mathrm{~K}}{\rightleftharpoons} 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$, will be
(1) $\mathrm{K}_{2}^{3} \mathrm{~K}_{3} / \mathrm{K}_{1}$
(2) $\mathrm{K}_{1} \mathrm{~K}_{3}^{3} / \mathrm{K}_{2}$
(3) $\mathrm{K}_{2} \mathrm{~K}_{3}^{3} / \mathrm{K}_{1}$
(4) $\mathrm{K}_{2} \mathrm{~K}_{3} / \mathrm{K}_{1}$

Answer:(3)

56. Concentration of the Ag^{+}ions in a saturated solution of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is $2.2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$.
Solubility product of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is
(1) 5.3×10^{-12}
(2) 2.42×10^{-8}
(3) 2.66×10^{-12}
(4) 4.5×10^{-11}

Answer:(1)
57. Which one of the following statements is not correct?
(1) Coenzymes increase the catalytic activity of enzyme
(2) Catalyst does not initiate any reaction
(3) The value of equilibrium constant is changed in the presence of a catalyst in the reaction at equilibrium
(4) Enzymes catalyse mainly bio-chemical reactions

Answer:(3)

Academy for NEET Coaching
(Unit of VETRII IAS STUDY CIRCLE)
CHENNAI | MADURAI

2018

58. Which one of the following conditions will favour maximum formation of the product in the reaction,
$A_{2}(g)+B_{2}(g) \rightleftharpoons X_{2}(g) \Delta_{r} H=-X k J ?$
(1) High temperature and high pressure
(2) Low temperature and low pressure
(3) Low temperature and high pressure
(4) High temperature and low pressure

Answer: (1)
59. The solubility of BaSO_{4} in water is 2.42×10^{-3} $g L^{-1}$ at 298 K . The value of its solubility product $\left(K_{s p}\right)$ will be (Given molar mass of $\mathrm{BaSO}_{4}=233$ $\left.g \mathrm{~mol}^{-1}\right)$
(1) $1.08 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
(2) $1.08 \times 10^{-12} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
(3) $1.08 \times 10^{-10} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
(4) $1.08 \times 10^{-8} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$

Answer: (1)
60. pH of a saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 9 . The solubility product $\left(\mathrm{K}_{\text {sp }}\right)$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ is :
(1) 0.5×10^{-15}
(2) 0.25×10^{-10}
(3) $0.125 \times 10=15$
(4) 0.5×10^{-10}

Answer: (1)
61. Conjugate base for Bronsted acids $\mathrm{H}_{2} \mathrm{O}$ and HF are:
(1) OH^{-}and $\mathrm{H}_{2} \mathrm{~F}^{-}$, respectively
(2) $\mathrm{H}_{3} \mathrm{O}^{+}$and F^{-}, respectively
(3) OH^{-}and F^{-}, respectively
(4) $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{H}_{2} \mathrm{~F}^{+}$, respectively

Answer: (3)
62. Which will make basic buffer?
(1) 50 mL of $0.1 \mathrm{M} \mathrm{NaOH}+25 \mathrm{~mL}$ of 0.1 M $\mathrm{CH}_{3} \mathrm{COOH}$
(2) 100 mL of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+100 \mathrm{~mL}$ of 0.1 M NaOH
(3) 100 mL of $0.1 \mathrm{M} \mathrm{HCl}+200 \mathrm{~mL}$ of 0.1 M $\mathrm{NH}_{4} \mathrm{OH}$
(4) 100 mL of $0.1 \mathrm{M} \mathrm{HCl}+100 \mathrm{~mL}$ of 0.1 M NaOH
Answer: (3)

2020

63. The solubility product for a salt of the type $A B$ is 4×10^{-8}. What is the molarity of its standard solution?
(1) $4 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$
(2) $2 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$
(3) $16 \times 10^{-16} \mathrm{~mol} / \mathrm{L}$
(4) $2 \times 10^{-16} \mathrm{~mol} / \mathrm{L}$

Answer:(2)

64. The pK_{b} of dimethylamine and pK_{a} of acetic acid are 3.27 and 4.77 respectively at $T(K)$. The correct option for the pH of dimethylammonium acetate solution is:
(1) 6.25
(2) 8.50
(3) 5.50
(4) 7.75

Answer: (4)

2022

65. The pH of the solution containing 50 mL each of 0.10 M sodium acetate and 0.01 M acetic acid is [Given pK_{a} of $\mathrm{CH}_{3} \mathrm{COOH}=4.57$]
(1) 4.57
(2) 2.57
(3) 5.57
(4) 3.57

Answer:(3)
66. $\quad 3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_{3}(\mathrm{~g})$
for the above reaction at $298 \mathrm{~K}, \mathrm{KC}$ is found to be 3.0×10^{-59}. If the concentration of O_{2} at equilibrium is 0.040 M then concentration of O_{3} in M is
(1) 2.4×10^{31}
(2) 1.2×10^{21}
(3) 4.38×10^{-32}
(4) 1.9×10^{-63}

Answer:(3)

(Unit of VETRII IAS STUDY CIRCLE)
CHENNAI | MADURAI

Redox REactions - C1108 2017
67. In the electrochemical cell
$\mathrm{Zn}\left|\mathrm{ZnSO}_{4}(0.01 \mathrm{M})\right|\left|\mathrm{CuSO}_{4}(1.0 \mathrm{M})\right| \mathrm{Cu}$, the emf of this Daniel cell is E_{1}. When the concentration of ZnSO_{4} is changed to 1.0 M and that of CuSO_{4} changed to 0.01 M , the emf changes to E_{2}. From the following, which one is the relationship between E_{1} and E_{2} ? (Given, $\frac{\mathrm{RT}}{\mathrm{F}}=0.059$)
(1) $\mathrm{E}_{2}=0 \neq \mathrm{E}_{1}$
(2) $\mathrm{E}_{1}=\mathrm{E}_{2}$
(3) $\mathrm{E}_{1}<\mathrm{E}_{2}$
(4) $E_{1}>E_{2}$

Answer: (4)

2018

68. The correct order of N -compounds in its decreasing order of oxidation states is
(1) $\mathrm{HNO}_{3} . \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NO}, \mathrm{N}_{2}$
(2) $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$
(3) $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{NH}_{4} \mathrm{Cl}$
(4) $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}, \mathrm{NO}, \mathrm{HNO}_{3}$

Answer: (1)
69. For the redox reaction $\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow$ $\mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ the correct coefficients of the reactants for the balanced equation are
$\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$
(1) $2 \quad 16 \quad 5$
(2) 2516
(3) $16 \quad 5 \quad 2$
(4) $5 \quad 16 \quad 3$

Answer: (2)
2020
70. The oxidation number of the underlined atom in the following species
(1) HAuCl_{4} is +3
(2) $\mathrm{Cu}_{2} \mathrm{O}$ is -1
(3) ClO_{3}^{-}is +5
(4) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is +6

Answer:(2)
71. Identify the reaction from following having top position in EMF series (Std. red. potential) according to their electrode potential at 298 K .
(1) $\mathrm{K}^{+}+1 \mathrm{e}^{-} \rightarrow \mathrm{K}_{\text {(s) }}$
(2) $\mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$
(3) $\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}_{(\mathrm{s})}$
(4) $\mathrm{Au}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$

Answer:(4)

2021

72. Which of the following reactions is the metal displacement reaction? Choose the right option.
(1) $2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{PbO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2} \uparrow$
(2) $2 \mathrm{KClO}_{3} \xrightarrow{\Delta} 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
(3) $\mathrm{Cr}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \xrightarrow{\Delta} \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Cr}$
(4) $\mathrm{Fe}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2} \uparrow$

Answer: (3)

2022

73. Identify the incorrect statement from the following
(1) Ionisation enthalpy of alkali metals decreases from top to bottom in the group.
(2) Lithium is the strongest reducing agent among the alkali metals.
(3) Alkali metals react with water to form their hydroxides.
(4) The oxidation number of K in KO_{2} is +4 .

Answer:(4)

Hydrogen - C1109
2021
74. Tritium, a radioactive isotope of hydrogen, emits which of the following particles?
(1) Neutron (n)
(2) Beta (β)
(3) Alpha (α)
(4) Gamma (γ)

Answer: (2)

VETRII NEET GATEWAY
Academy for NEET Coaching
(Unit of VETRII IAS STUDY CIRCLE)
CHENNAI | MADURAI

2022
75. Match List-I with List-II.

List - I List - II
(Hydrides) (Nature)
(a) MgH_{2}
(i) Electron precise
(b) GeH_{4}
(ii) Electron deficient
(c) $\mathrm{B}_{2} \mathrm{H}_{6}$
(iii) Electron rich
(d) HF
(iv) Ionic

Choose the correct answer from the options given below
(1) (a) - (i), (b) - (ii), (c) - (iv), (d) - (iii)
(2) (a) - (ii), (b) - (iii), (c) - (iv), (d) - (i)
(3) (a) - (iv), (b) - (i), (c) - (ii), (d) - (iii)
(4) (a) - (iii), (b) - (i), (c) - (ii), (d) - (iv)

Answer:(3)

s- Block Element (Alkali and Alkaline earth

 metals) - C1110
2017

76. Ionic mobility of which of the following alkali metal ions is lowest when aqueous solution of their salts are put under an electric field?
(1) Li
(2) Na
(3) K
(4) Rb

Answer:(1)
2019
77. Which of the following is an amphoteric hydroxide?
(1) $\mathrm{Sr}(\mathrm{OH})_{2}$
(2) $\mathrm{Ca}(\mathrm{OH})_{2}$
(3) $\mathrm{Mg}(\mathrm{OH})_{2}$
(4) $\mathrm{Be}(\mathrm{OH})_{2}$

Answer: (4)

2020

78. What is the role of gypsum, $\mathrm{CaSO}_{4}, 2 \mathrm{H}_{2} \mathrm{O}$ in setting of cement? Identify the correct option from the following :
(1) to slow down the setting process
(2) to fasten the setting process
(3) to provide water molecules for hydration process
(4) to help to remove water molecules

Answer: (1)

2021
79. The structures of beryllium chloride in solid state and vapour phase, are:
(1) Chain in both
(2) Chain and dimer, respectively
(3) Linear in both
(4) Dimer and Linear, respectively

Answer: (2)
80. Among the following alkaline earth metal halides, one which is covalent and soluble in organic solvents is:
(1) Beryllium chloride
(2) Calcium chloride
(3) Strontium chloride
(4) Magnesium chloride

Answer: (1)

2022

81. Match List-I with List-II

List-I List-II

(a) $\mathrm{Li} \quad$ (i) absorbent for carbon dioxide
(b) Na
(ii) electrochemical cells
(c) KOH
(iii) coolant in fast breeder reactors
(d) Cs
(iv) photoelectric cell

Choose the correct answer from the options given below :
(1) (a) - (i), (b) - (iii), (c) - (iv), (d) - (ii)
(2) (a) - (ii), (b) - (iii), (c) - (i), (d) - (iv)
(3) (a) - (iv), (b) - (i), (c) - (iii), (d) - (ii)
(4) (a) - (iii), (b) - (iv), (c) - (ii), (d) - (i)

Answer:(2)

SOME p- Block Elements - C1111

2017

82. Which of the following is a sink for CO ?
(1) Plants
(2) Haemoglobin
(3) Micro-organisms present in the soil
(4) Oceans

Answer:(3)

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI | MADURAI

83. The species, having bond angles of 120° is
(1) BCl_{3}
(2) PH_{3}
(3) ClF_{3}
(4) NCl_{3}
Organic Chemistry - Some Basic Principles and techniques - C1112
2017

2018

84. The correct order of atomic radii in group 13 elements is
(1) $B<G a<A l<T I<I n$
(2) $B<A I<G a<I n<T I$
(3) $B<A I<I n<G a<T I$
(4) $B<G a<A I<I n<T I$

Answer: (3)
85. Which one of the following elements is unable to form $M F_{6}^{3-}$ ion?
(1) B
(2) Al
(3) Ga
(4) In

Answer: (4)
2020
86. Which one of the following reactions does not come under hydrolysis type reaction?
(1) $\mathrm{P}_{4} \mathrm{O}_{10(\mathrm{~s})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})}$
(2) $\mathrm{SiCl}_{4(\mathrm{l})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{SiO}_{2(\mathrm{~s})}+4 \mathrm{HCl}_{\text {(aq) }}$
(3) $\mathrm{Li}_{3} \mathrm{~N}_{(\mathrm{s})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{NH}_{3(\mathrm{~g})}+3 \mathrm{LiOH}_{(\mathrm{aq})}$
(4) $2 \mathrm{~F}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 4 \mathrm{HF}_{(\text {aq })}+\mathrm{O}_{2(\mathrm{~g})}$

Answer:(4)

2022

87. Choose the correct statement:
(1) Diamond is $s p^{3}$ hybridised and graphite is sp^{2} hybridized.
(2) Both diamond and graphite are used as dry lubricants.
(3) Diamond and graphite have two dimensional network.
(4) Diamond is covalent and graphite is ionic.

Answer:(1)
(3)
88. The most suitable method of separation of $1: 1$ mixture of ortho and para-nitrophenols is
(1) Steam distillation
(2) Sublimation
(3) Chromatography
(4) Crystallisation

Answer: (1)
89. Identify A and predict the type of reaction

(1)

(2)
 and substitution reaction

(4)
 and cine substitution reaction

Answer: (2)
90. Match List-I with List-II.

List - I	List - II
(Products formed)	(Reaction of carbonyl
	compound with)

(a) Cyanohydrin
(i) $\mathrm{NH}_{2} \mathrm{OH}$
(b) Acetal
(ii) RNH_{2}
(c) Schiff's base
(iii) alcohol
(d) Oxime
(iv) HCN

Academy for NEET Coaching
(Unit of VETRII IAS STUDY CIRCLE)
CHENNAI \| MADURAI

Choose the correct answer from the options given below
(1) (a) - (i), (b) - (iii), (c) - (ii), (d) - (iv)
(2) (a) - (iv), (b) - (iii), (c) - (ii), (d) - (i)
(3) (a) - (iii), (b) - (iv), (c) - (ii), (d) - (i)
(4) (a) - (ii), (b) - (iii), (c) - (iv), (d) - (i)

Answer: (4)
91. Which of the following statements is not true for halogens?
(1) All but fluorine show positive oxidation states.
(2) All are oxidizing agents.
(3) All form monobasic oxyacids.
(4) Chlorine has the highest electron-gain enthalpy.

Answer: (4)

2019

92. The number of sigma (σ) and pi (π) bonds in pent-2-en-4-yne is :
(1) 10σ bonds and 3π bonds
(2) 8σ bonds and 5π bonds
(3) 11σ bonds and 2π bonds
(4) 13σ bonds and no π bonds

Answer: (1)
93. The compound that is most difficult to protonate is:
(1)

(2)

(3)

(4)

2020
94. A liquid compound (x) can be purified by steam distillation only if it is
(1) Not steam volatile, immiscible with water
(2) Steam volatile, immiscible with water
(3) Not steam volatile, miscible with water
(4) Steam volatile, miscible with water

Answer:(2)

2021
95. The compound which shows metamerism is:
(1) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
(2) $\mathrm{C}_{5} \mathrm{H}_{12}$
(3) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$
(4) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$

Answer: (1)
96. An organic compound contains 78% (by wt.) carbon and remaining percentage of hydrogen. The right option for the empirical formula of this compound is :
[Atomic wt. of C is $12, \mathrm{H}$ is 1]
(1) CH_{4}
(2) CH
(3) CH_{2}
(4) CH_{3}

Answer: (4)

97. The correct structure of 2, 6-Dimethyl-dec-4ene is

2, 6-டைமமத்தில்-டெக்-4-ஈன் -ன் சரியான அமைப்பு:
(1)

(2)

(3)

(4)

Answer (2)

Answer: (4)

2022

VETRII NEET GATEWAY

Academy for NEET Coaching
(Unit of VETRII IAS STUDY CIRCLE)
CHENNAI | MADURAI

HYDROCARBONS - C1113
2017
98. The incorrect statement regarding chirality is
(1) Enantiomers are superimposable mirror images on each other
(2) A racemic mixture shows zero optical rotation
(3) $\mathrm{S}_{\mathrm{N}} 1$ reaction yields $1: 1$ mixture of both enantiomers
(4) The product obtained by $\mathrm{S}_{\mathrm{N}} 2$ reaction of haloalkane having chirality at the reactive site shows inversion of configuration
Answer:(1)
99. The Kjeldahl's method for the estimation of nitrogen can be used to estimate the amount of nitrogen in which one of the following compounds?
(1)

(2)

(3)

(4)

Answer: (1)
100. The correct IUPAC name of the following compound is

(1) 1-bromo-4-methyl-5-chlorohexan-3-ol
(2) 6-bromo-4-methyl-2-chlorohexan-4-ol
(3) 1-bromo-5-chloro-4-methylhexan-3-ol
(4) 6-bromo-2-chloro-4-methythexan-4-ol

Answer:(3)
101. Which one is the correct order of acidity?
(1) $\mathrm{CH}_{3}-\mathrm{CH}_{3}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>$ $\mathrm{CH} \equiv \mathrm{CH}$
(2) $\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{CH} \equiv \mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{C} \equiv$ $\mathrm{CH}>\mathrm{CH} \equiv \mathrm{CH}$
(3) $\mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>$ $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
(4) $\mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>$ $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
Answer: (3)
102. With respect to the conformers of ethane, which of the following statements is true?
(1) Both bond angles and bond length remains same
(2) Both angle remains same but bond length changes
(3) Bond angle changes but bond length remains same
(4) Both bond angle and bond length change Answer: (1)

2019

103. The most suitable reagent for the following conversion, is:

cis-2-butene
(1) Na /liquid NH_{3}
(2) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, quinoline
(3) $\mathrm{Zn} / \mathrm{HCl}$
(4) $\mathrm{Hg}^{2+} / \mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{O}$

Answer: (2)
2020
104. Which of the following is a free radical substitution reaction?
(1) Propene with $\mathrm{HBr} /\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{2}$
(2) Benzene with $\mathrm{Br}_{2} / \mathrm{AlCl}_{3}$
(3) Acetylene with HBr
(4) Methane with $\mathrm{Br}_{2} / \mathrm{hv}$

Answer:(4)

(Unit of VETRII IAS STUDY CIRCLE)
CHENNAI \| MADURAI
105. How many (i) sp^{2} hybridised carbon atoms and
(ii) π bonds are present in the following compound?

(1) 8,5
(2) 7,5
(3) 8,6
(4) 7,6

Answer:(4)

2021

106. Dihedral angle of least stable conformer of ethane is:
(1) 0°
(2) 120°
(3) 180°
(4) 60°

Answer: (1)
107. The major product of the following chemical reaction is:
கீழ்கண்ட வேதிவிணையில் உருவாகும் மிகுதியான விளைலபாருள்:

(1)

(2)

108. Which compound amongst the following is not
an aromatic compound?
(1)

(2)

(3)

(4)

Answer:(2)
109. Compound X on reaction with O_{3} followed by $\mathrm{Zn} / \mathrm{H}_{2} \mathrm{O}$ gives formaldehyde and 2-methyl propanal as products. The compound X is
(1) 2-Methylbut-2-ene
(2) Pent-2-ene
(3) 3-Methylbut-1-ene
(4) 2-Methylbut-1-ene

Answer:(3)

Environmental Chemistry - C1114

2018
110. Which oxide of nitrogen is not a common pollutant introduced into the atmosphere both due to natural and human activity?
(1) $\mathrm{N}_{2} \mathrm{O}$
(2) NO 2
(3) $\mathrm{N}_{2} \mathrm{O}_{5}$
(4) NO

Answer: (1)

2019

111. Among the following, the one that is not a green house gas is:
(1) Nitrous oxide
(2) methane
(3) ozone
(4) sulphur dioxide

Answer: (4)

Answer (2)
(Unit of VETRII IAS STUDY CIRCLE)
CHENNAI | MADURAI

2020

112. Which of the following statement is NOT true about acid rain?
(1) Its pH is less than 5.6
(2) It is due to reaction of $\mathrm{SO}_{2}, \mathrm{NO}_{2}$ and CO_{2} with rain water
(3) Causes no damage to monuments like Taj Mahal
(4) It is harmful for plants

Answer:(3)
2021
113. Match List - I with List - II.
List - I

> List - II
(a) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
(i) Acid rain
(b) $\mathrm{HOCl}(\mathrm{g}) \xrightarrow{h v} \quad \dot{\mathrm{O}} \mathrm{H}+\dot{\mathrm{C}}$
(ii) Smog
(c) $\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(iii) Ozone depletion
(d) $\mathrm{NO}_{2}(\mathrm{~g}) \xrightarrow{h v} \mathrm{NO}(\mathrm{g})+\mathrm{O}(\mathrm{g})$
(iv) Tropospheric pollution

Choose the correct answer from the options given below:
(1) (a) - (iii), (b) - (ii), (c) - (iv), (d) - (i)
(2) (a) - (i), (b) - (ii), (c) - (iii), (d) - (iv)
(3) (a) - (ii), (b) - (iii), (c) - (iv), (d) - (i)
(4) (a) - (iv), (b) - (iii), (c) - (i), (d) - (ii)

Answer: (4)

2022

114. The pollution due to oxides of sulphur gets enhanced due to the presence of:
(a) particular matter
(b) ozone
(c) hydrocarbons
(d) hydrogen peroxide

Choose the most appropriate answer from the options given below:
(1) (b), (c), (d) only
(2) (a), (c), (d) only
(3) (a), (d) only
(4) (a), (b), (d) only

Answer:(4)

Solid State - C1201

2017
115. Which is the incorrect statement?
(1) Frenkel defect is favoured in those ionic compounds in which sizes of cation and anions are almost equal
(2) $\mathrm{FeO}_{0.98}$ has non stoichiometric metal deficiency defect
(3) Density decreases in case of crystals with Schottky's defect
(4) $\mathrm{NaCl}(\mathrm{s})$ is insulator, silicon is semiconductor, silver is conductor, quartz is piezo electric crystal

Answer: (1 \& 2)*

116. Iron exhibits bcc structure at room temperature. Above $900^{\circ} \mathrm{C}$, it transforms to fee structure. The ratio of density of iron at room temperature to that at $900^{\circ} \mathrm{C}$ (assuming molar mass and atomic radii of iron remains constant with temperature)
(1) $\frac{3 \sqrt{3}}{4 \sqrt{2}}$
(2) $\frac{4 \sqrt{3}}{3 \sqrt{2}}$
(3) $\frac{\sqrt{3}}{\sqrt{2}}$
(4) $\frac{1}{2}$

Answer: (1)

2019

117. A compound is formed by cation C and anion A . The anions form hexagonal close packed (hep) lattice and the cations occupy 75% of octahedral voids. The formula of the compound is:
(1) $\mathrm{C}_{2} \mathrm{~A}_{3}$
(2) $\mathrm{C}_{3} \mathrm{~A}_{2}$
(3) $\mathrm{C}_{3} \mathrm{~A}_{4}$
(4) $\mathrm{C}_{4} \mathrm{~A}_{3}$

Answer: (3)

2020
118. Which one of the following compounds shows both, Frenkel as well as Schottky defects?
(1) ZnS
(2) AgBr
(3) Agl
(4) NaCl

Answer:(2)

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI | MADURAI

2021
119. The correct option for the number of body centred unit cells in all 14 types of Bravais lattice unit cells
(1) 3
(2) 7
(3) 5
(4) 2

Answer: (1)
120. Right option for the number of tetrahedral and octahedral voids in hexagonal primitive unit cell are :
(1) 12,6
(2) 8,4
(3) 6,12
(4) 2,1

Answer: (1)

2022

121. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): In a particular point defect, an ionic solid is electrically neutral, even if few of its cations are missing from its unit cells.
Reason (R):
In an ionic solid, Frenkel defect arises due to dislocation of cation from its lattice site to interstitial site, maintaining overall electrical neutrality.
In the light of the above statements, choose the most appropriate answer from the options given below:
(1) (A) is correct but (R) is not correct
(2) (A) is not correct but (R) is correct
(3) Both (A) and (R) are correct and (R) is the correct explanation of (A)
(4) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
Answer:(4)

Electrochemistry - C1203
2017
122. The correct order of the stoichiometries of AgCl formed when AgNO_{3} in excess is treated with the complexes: $\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}, \quad \mathrm{CoCl}_{3} \cdot 5 \mathrm{NH}_{3}$, CoCl3. $4 \mathrm{NH}_{3}$ respectively is
(1) $2 \mathrm{AgCl}, 3 \mathrm{AgCl}, 1 \mathrm{AgCl}$
(2) $1 \mathrm{AgCl}, 3 \mathrm{AgCl}, 2 \mathrm{AgCl}$
(3) $3 \mathrm{AgCl}, 1 \mathrm{AgCl}, 2 \mathrm{AgCl}$
(4) $3 \mathrm{AgCl}, 2 \mathrm{AgCl}, 1 \mathrm{AgCl}$

Answer: (4)
2018
123. Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below:

Then the species undergoing disproportionation is
(1) Br_{2}
(2) BrO_{4}^{-}
(3) BrO_{3}^{-}
(4) HBrO

Answer: (4)
124. For the cell reaction
$2 \mathrm{Fe}^{3+}(\mathrm{aq})+21^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})$
$E_{\text {cell }}^{\Theta}=0.24 \mathrm{~V}$ at 298 K . The standard Gibbs energy ($\Delta_{r} \mathrm{G}^{\ominus}$) of the cell reaction is :
[Given that Faraday constant $\mathrm{F}=96500 \mathrm{C} \mathrm{mol}^{-1}$]
(1) $-46.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $-23.16 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3) $46.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4) $23.16 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: (1)
125. For a cell involving one electron $E_{\text {cell }}^{\Theta}=0.59 \mathrm{~V}$ at 299 K , the equilibrium constant for the cell reaction is:
[Given that $\frac{2.303 R T}{F}=0.059 \mathrm{~V}$ at $\mathrm{T}=298 \mathrm{~K}$]
(1) 1.0×10^{2}
(2) 1.0×10^{5}
(3) 1.0×10^{10}
(4) 1.0×10^{30}

Answer: (3)

VETRII NEET GATEWAY

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI | MADURAI

126. In a typical fuel cell, the reactant (R) and product (P) are
(1) $\mathrm{R}=\mathrm{H}_{2(\mathrm{~g})} \cdot \mathrm{N}_{2(\mathrm{~g})}: \mathrm{P}=\mathrm{NH}_{3(\mathrm{aq})}$
(2) $\mathrm{R}=\mathrm{H}_{2(g)} \cdot \mathrm{O}_{2(g)}: \mathrm{P}=\mathrm{H}_{2} \mathrm{O}_{2(1)}$
(3) $\mathrm{R}=\mathrm{H}_{2(\mathrm{~g})} \cdot \mathrm{O}_{2(\mathrm{~g})}: \mathrm{P}=\mathrm{H}_{2} \mathrm{O}_{(I)}$
(4) $\mathrm{R}=\mathrm{H}_{2(\mathrm{~g})} \cdot \mathrm{O}_{2(\mathrm{~g})} \cdot \mathrm{Cl}_{2(\mathrm{~g})}: \mathrm{P}=\mathrm{HClO}_{4(\mathrm{aq})}$

Answer:(3)

2021

127. The molar conductance of $\mathrm{NaCl}, \mathrm{HCl}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ at infinite dilution are 126.45 , 426.16 and $91.0 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. The molar conductance of $\mathrm{CH}_{3} \mathrm{COOH}$ at infinite dilution is. Choose the right option for your answer.
(1) $540.48 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(2) $201.28 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(3) $390.71 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(4) $698.28 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Answer: (3)
128. The molar conductivity of 0.007 M acetic acid is $20 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. What is the dissociation constant of acetic acid? Choose the correct option.
$\left[\begin{array}{l}\Lambda_{\mathrm{H}^{+}}^{\circ}=350 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \\ \Lambda_{\mathrm{CH}_{3} \mathrm{COO}^{-}}^{\circ}=50 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\end{array}\right]$
(1) $2.50 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
(2) $1.75 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
(3) $2.50 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
(4) $1.75 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$

Answer: (4)

2022
129. At 298 K , the standard electrode potentials of $\mathrm{Cu}^{2+} / \mathrm{Cu}, \mathrm{Zn}^{2+} / \mathrm{Zn}, \mathrm{Fe}^{2+} / \mathrm{Fe}$ and $\mathrm{Ag}^{+} / \mathrm{Ag}$ are $0.34 \mathrm{~V},-0.76 \mathrm{~V},-0.44 \mathrm{~V}$ and 0.80 V , respectively.
On the basis of standard electrode potential, predict which of the following reaction cannot occur?
(1) $\mathrm{FeSO}_{4}(\mathrm{aq})+\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Fe}(\mathrm{s})$
(2) $2 \mathrm{CuSO}_{4}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s}) \rightarrow 2 \mathrm{Cu}(\mathrm{s})+$ $\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
(3) $\mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
(4) $\mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{FeSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$

Answer:(2)
130. Find the emf of the cell in which the following reaction takes place at 298 K
$\mathrm{Ni}(\mathrm{s})+2 \mathrm{Ag}^{+}(0.001 \mathrm{M}) \rightarrow \mathrm{Ni}^{2+}(0.001 \mathrm{M})+$
$2 \mathrm{Ag}(\mathrm{s})\left(\right.$ Given that $E_{\text {cell }}^{0}=10.5 \mathrm{~V}, \frac{2.303 R T}{F} 0.059$ at 298 K)
(1) 0.9615 V
(2) 1.05 V
(3) 1.0385 V
(4) 1.385 V

Answer (NA)

SOLUTIONS - C1202

2017
131. Predict the correct intermediate and product in the following reaction:

(2)

(3)

(4)

$B: \mathrm{H}_{3} \mathrm{C}-\mathrm{C}=\mathrm{CH}$

Answer: (1)

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI \| MADURAI

132. If molality of the dilute solution is doubled, the value of molal depression constant (K_{f}) will be
(1) Unchanged
(2) Doubled
(3) Halved
(4) Tripled

Answer: (1)
133. Which of the following is dependent on temperature?
(1) Weight percentage
(2) Molality
(3) Molarity
(4) Mole fraction

Answer: (3)

2018

134. Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations:
a. $60 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+40 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
b. $55 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+45 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
c. $75 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{HCl}+25 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{NaOH}$
d. $100 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+100 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
pH of which one of them will be equal to 1 ?
(1) d
(2) a
(3) b
(4) C

Answer: (3)

2019

135. The mixture that forms maximum boiling azeotrope is:
(1) Water + Nitric acid
(2) Ethanol + Water
(3) Acetone + Carbon disulphide
(4) Heptane + Octane

Answer: (1)
136. For an ideal solution, the correct option is:
(1) $\Delta_{\text {mix }} S=0$ at constant T and P
(2) $\Delta_{\text {mix }} V \neq 0$ at constant T and P
(3) $\Delta_{\text {mix }} \mathrm{H}=0$ at constant T and P
(4) $\Delta_{\text {mix }} G=0$ at constant T and P

Answer: (3)

2020
137. Which among the following salt solutions is basic in nature?
(1) Sodium acetate
(2) Ammonium chloride
(3) Ammonium sulphate
(4) Ammonium nitrate

Answer:(1)

138. If 8 g of a non-electrolyte solute is dissolved in 114 g of n -octane to reduce its vapour pressure to 80%, the molar mass (in $\mathrm{g} \mathrm{mol}^{-1}$) of the solute is [Given that molar mass of n -octane is 114 g mol^{-1}]
(1) 20
(2) 40
(3) 60
(4) 80

Answer:(2)
139. Isotonic solutions have same
(1) Boiling temperature
(2) Vapour pressure
(3) Freezing temperature
(4) Osmotic pressure

Answer:(4)
2021
140. The following solutions were prepared by dissolving 10 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in 250 ml of water $\left(\mathrm{P}_{1}\right), 10 \mathrm{~g}$ of urea $\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}\right)$ in 250 ml of water $\left(\mathrm{P}_{2}\right)$ and 10 g of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ in 250 ml of water $\left(\mathrm{P}_{3}\right)$. The right option for the decreasing order of osmotic pressure of these solutions is:
(1) $P_{3}>P_{1}>P_{2}$
(2) $P_{2}>P_{1}>P_{3}$
(3) $P_{1}>P_{2}>P_{3}$
(4) $P_{2}>P_{3}>P_{1}$

Answer: (2)
141. The correct option for the value of vapour pressure of a solution at $45^{\circ} \mathrm{C}$ with benzene to octane in molar ratio $3: 2$ is :
[At $45^{\circ} \mathrm{C}$ vapour pressure of benzene is 280 mm Hg and that of octane is 420 mm Hg . Assume Ideal gas]
(1) 350 mm of Hg
(2) 160 mm of Hg
(3) 168 mm of Hg
(4) 336 mm of Hg

Answer: (4)

VETRII NEET GATEWAY

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI | MADURAI

2022
142. In one molal solution that contains 0.5 mole of a solute, there is
(1) 100 mL of solvent
(2) 1000 g of solvent
(3) 500 mL of solvent
(4) 500 g of solvent

Answer:(4)

Chemical Kinetics - C1204

2017
143. Mechanism of a hypothetical reaction $X_{2}+Y_{2} \rightarrow$ 2 XY is given below:
(i) $X_{2} \rightarrow X+X$ (fast)
(ii) $X+Y_{2} \rightleftharpoons X Y+Y$ (slow)
(iii) $X+Y \rightarrow X Y$ (fast)

The overall order of the reaction will be
(1) 1.5
(2) 1
(3) 2
(4) 0

Answer: (1)
144. A first order reaction has a specific reaction rate of $10^{-2} \mathrm{~s}^{-1}$. How much time will it take for 20 g of the reactant to reduce to 5 g ?
(1) 693.0 second
(2) 238.6 second
(3) 138.6 second
(4) 346.5 second

Answer: (3)

2018

145. When initial concentration of the reactant is doubled, the half-life period of a zero order reaction
(1) is tripled
(2) is doubled
(3) is halved
(4) remains unchanged

Answer: (2)
146. The correct difference between first- and second-order reactions is that
(1) a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed
(2) the half-life of a first-order reaction does not depend on $[A]$: the half-life of a secondorder reaction does depend on $[A]_{0}$
(3) the rate of a first-order reaction does not depend on reactant concentrations; the rate of a second-order reaction does depend on reactant concentrations
(4) the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations

Answer: (2)

2019

147. If the rate constant for a first order reaction is k , the time (t) required for the completion of 99% of the reaction is given by :
(1) $t=0.693 / \mathrm{k}$
(2) $t=6.909 / k$
(3) $t=4.606 / \mathrm{k}$
(4) $t=2.303 / \mathrm{k}$

Answer: (4)
148. For the chemical reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) 3 \leftrightharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ the correct option is
(1) $-\frac{1}{3} \frac{d\left[H_{2}\right]}{d t}=-\frac{1}{2} \frac{d\left[N H_{3}\right]}{d t}$
(2) $-\frac{d\left[N_{2}\right]}{d t}=2 \frac{d\left[\mathrm{NH}_{3}\right]}{d t}$
(3) $-\frac{d\left[N_{2}\right]}{d t}=\frac{1}{2} \frac{d\left[N H_{3}\right]}{d t}$
(4) $3 \frac{d\left[H_{2}\right]}{d t}=2 \frac{d\left[N H_{3}\right]}{d t}$

Answer: (3)

2020

149. 1.The half-life for a zero order reaction having 0.02 M initial concentration of reactant is 100 s . The rate constant (in $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$) for the reaction is
(1) 1.0×10^{-2}
(2) 1.0×10^{-4}
(3) 2.0×10^{-4}
(4) 2.0×10^{-3}

Answer:(2)

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI \| MADURAI

150. In collision theory of chemical reaction, $Z_{A B}$ represents
(1) the fraction of molecules with energies equal to E_{a}
(2) the fraction of molecules with energies greater than E_{a}
(3) the collision frequency of reactants, A and B
(4) steric factor

Answer: (3)

2021

151. For a reaction $A \rightarrow B$, enthalpy of reaction is $4.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and enthalpy of activation is 9.6 $\mathrm{kJ} \mathrm{mol}^{-1}$. The correct potential energy profile for the reaction is shown in option.

(2)

(3)

(4)

Answer (3)

152. The slope of Arrhenius plot $\left(\operatorname{In~} \mathrm{kv} / \mathrm{s} \frac{1}{\mathrm{~T}}\right.$) of first order reaction is $-5 \times 10^{3} \mathrm{~K}$. The value of E_{a} of the reaction is. Choose the correct option for your answer.
[Given $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$]
(1) $-83 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $41.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3) $83.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4) $166 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: (2)

2022

153. The given graph is a representation of kinetics of a reaction.

The y and x axes for zero and first order reactions, respectively are
(1) zero order ($y=$ rate and $x=$ concentration), first order $\left(y=t_{1 / 2}\right.$ and $x=$ concentration)
(2) zero order ($\mathrm{y}=$ rate and $\mathrm{x}=$ concentration), first order ($y=$ rate and $x=$ $t / 1 / 2$)
(3) zero order ($y=$ concentration and $x=$ time), first order $(y=t 1 / 2$ and $x=$ concentration)
(4) zero order ($y=$ concentration and $x=$ time), first order ($y=$ rate constant and $x=$ concentration)

Answer:(1)

154. For a first order reaction $A \rightarrow$ Products, initial concentration of A is 0.1 M , which becomes 0.001 M after 5 minutes. Rate constant for the reaction in min^{-1} is
(1) 0.4606
(2) 0.2303
(3) 1.3818
(4) 0.9212

Answer:(4)

Surface Chemistry - C1205
 2018

155. On which of the following properties does the coagulating power of an ion depend?
(1) Both magnitude and sign of the charge on the ion
(2) Size of the ion alone
(3) The magnitude of the charge on the ion alone
(4) The sign of charge on the son alone

Answer: (1)

2019
156. Enzymes that utilize ATP in phosphate transfer require an alkaline earth metal (M) as the cofactor. M is :
(1) Be
(2) Mg
(3) Ca
(4) Sr

Answer: (2)

VETRII NEET GATEWAY

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI \| MADURAI

2020
157. In which of the sols, the colloidal particles are with negative charge?
(1) Hydrated $\mathrm{Al}_{2} \mathrm{O}_{3}$
(2) TiO_{2}
(3) Haemoglobin
(4) Starch

Answer:(4)

2021

158. The right option for the statement "Tyndall effect is exhibited by", is:
(1) Urea solution
(2) NaCl solution
(3) Glucose solution
(4) Starch solution

Answer: (4)

2022

159. The incorrect statement regarding enzymes is
(1) Enzymes are polysaccharides.
(2) Enzymes are very specific for a particular reaction and substrate.
(3) Enzymes are biocatalysts.
(4) Like chemical catalysts enzymes reduce the activation energy of bio processes.
Answer:(1)
160. Given below are two statements

Statement I: In the coagulation of a negative sol, the flocculating power of the three given ions is in the order $\mathrm{Al}^{3+}>\mathrm{Ba}^{2+}>\mathrm{Na}^{+}$
Statement II: In the coagulation of a positive sol, the flocculating power of the three given salts is in the order $\mathrm{NaCl}>\mathrm{Na}_{2} \mathrm{SO}_{4}>\mathrm{Na}_{3} \mathrm{PO}_{4}$ In the light of the above statements, choose the most appropriate answer from the options given below
(1) Statement I is correct but Statement II is incorrect.
(2) Statement I is incorrect but Statement II is correct.
(3) Both Statement I and Statement II are correct.
(4) Both Statement I and Statement II are incorrect.

Answer:(1)

General Principles and Process of Isolation
of Elements - C1206
2018
161. Considering Ellingham diagram, which of the following metals can used to reduce alumina?
(1) Mg
(2) Zn
(3) Fe
(4) Cu

Answer: (4)
2019
162. Which one is malachite from the following?
(1) CuFeS_{2}
(2) $\mathrm{Cu}(\mathrm{OH})_{2}$
(3) $\mathrm{Fe}_{3} \mathrm{O}_{4}$
(4) $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$

Answer: (4)
163. Match the elements in Column I with methods of purification in Column II.
Column I Column II
(a) Boron
(i) Van Arkel method
(b) Tin
(ii) Mond's process
(c) Zirconium
(iii) Liquation
(d) Nickel
(iv) Zone refining
(1) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
(2) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
(3) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
(4) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)

Answer:(2)

2021

164. The maximum temperature that can be achieved in blast furnace is:
(1) Upto 5000 K
(2) Upto 1200 K
(3) Upto 2200 K
(4) Upto 1900 K

Answer: (3)
165. Which one of the following methods can be used to obtain highly pure metal which is liquid at room temperature ?
(1) Zone refining
(2) Electrolysis
(3) Chromatography
(4) Distillation

Answer: (4)

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI | MADURAI

2022
166. Match List-I with List-II.

List-I
(Ores)
(a) Haematite
(b) Magnetite
(c) Calamine
(d) Kaolinite

List-II
(Composition)

Choose the correct answer from the options given below:
(1) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
(2) (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv)
(3) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
(4) (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)

Answer:(4)
p-Block Elements - C1207
2017
167. Which of the following pairs of compounds is isoelectronic and isostructural?
(1) $\mathrm{IF}_{3}, \mathrm{XeF}_{2}$
(2) $\mathrm{BeCl}_{2}, \mathrm{XeF}_{2}$
(3) $\mathrm{Tel}_{2}, \mathrm{XeF}_{2}$
(4) $\mathrm{IBr}_{2}^{-}, \mathrm{XeF}_{2}$

Answer: (4)
168. Match the interhalogen compounds of column I with the geometry in column II and assign the correct code

Column I
(a) XX^{\prime}
(b) $X X^{\prime}{ }_{3}$
(c) $X X^{\prime}{ }_{5}$
(d) $\mathrm{XX}^{\prime}{ }_{7}$

Column II

(i) T-shape
(ii) Pentagonal bipyramidal
(iii) Linear
(iv) Square-pyramidal
(v) Tetrahedral

Code:

	(a)	(b)	(c)	(d)
(1)	(iv)	(iii)	(ii)	(i)
(2)	(iii)	(iv)	(i)	(ii)
(3)	(iii)	(i)	(iv)	(ii)
(4)	(v)	(iv)	(iii)	(ii)

Answer: (3)

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI \| MADURAI

174. For the second period elements the correct increasing order of first ionization enthalpy is:
(1) $\mathrm{Li}<\mathrm{Be}<\mathrm{B}<\mathrm{C}<\mathrm{N}<\mathrm{O}<\mathrm{F}<\mathrm{Ne}$
(2) $\mathrm{Li}<\mathrm{B}<\mathrm{Be}<\mathrm{C}<\mathrm{O}<\mathrm{N}<\mathrm{F}<\mathrm{Ne}$
(3) $\mathrm{Li}<\mathrm{B}<\mathrm{Be}<\mathrm{C}<\mathrm{N}<\mathrm{O}<\mathrm{F}<\mathrm{Ne}$
(4) $\mathrm{Li}<\mathrm{Be}<\mathrm{B}<\mathrm{C}<\mathrm{O}<\mathrm{N}<\mathrm{F}<\mathrm{Ne}$

Answer: (2)
175. Identify the incorrect statement related to PCl_{5} from the following:
(1) Three equatorial $\mathrm{P}-\mathrm{Cl}$ bonds make an angle of 120° with each other
(2) Two axial $\mathrm{P}-\mathrm{Cl}$ bonds make an angle of 180° with each other
(3) Axial $\mathrm{P}-\mathrm{Cl}$ bonds are longer than equatorial P-Cl bonds
(4) PCl_{5} molecule is non-reactive

Answer: (4)
176. Match the Xenon compounds in Column-I with its structure in Column - II and assign the correct code

Column-I
(a) XeF_{4}
(b) XeF_{6}
(c) XeOF_{4}
(d) XeO_{3}

Code:

	(a)	(b)	(c)	(d)
(1)	(i)	(ii)	(iii)	(iv)
(2)	(ii)	(iii)	(iv)	(i)
(3)	(ii)	(iii)	(i)	(iv)
(4)	(iii)	(iv)	(i)	(ii)

Answer: (2)

2020

177. Match the compounds of $X e$ in column I with the molecular structure in column II.
Column I Column II
(a) XeF_{2}
(i) Square planar
(b) XeF_{4}
(ii) Linear
(c) XeO_{3}
(iii) Square pyramidal
(d) XeOF_{4}
(iv) Pyramidal
(1) (a)-(ii) (b)-(i) (c)-(iv) (d)-(iii)
(2) (a)-(ii) (b)-(i) (c)-(iii) (d)-(iv)
(3) (a)-(ii) (b)-(iv) (c)-(iii) (d)-(i)
(4) (a)-(ii) (b)-(iii) (c)-(i) (d)-(iv)

Answer:(1)
178. Which of the following oxide is amphoteric in nature?
(1) CO_{2}
(2) SnO_{2}
(3) SiO_{2}
(4) GeO_{2}

Answer:(2)

2021

179. Statement I:

Acid strength increases in the order given as HF $\ll \mathrm{HCl} \ll \mathrm{HBr} \ll \mathrm{HI}$.

Staement II:

As the size of the elements $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ Increases down the group, the bond strength of $\mathrm{HF}, \mathrm{HCl}$, HBr and HI decreases and so the acid strength increases.
In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I is incorrect but Statement II is true
(2) Both Statement I and Statement II are true
(3) Both Statement I and Statement II are false
(4) Statement I correct but Statement II is false

Answer: (2)
180. Noble gases are named because of their inertness towards reactivity. Identify an incorrect statement about them.
(1) Noble gases have large positive values of electron gain enthalpy
(2) Noble gases are sparingly soluble in water
(3) Noble gases have very high melting and boiling points
(4) Noble gases have weak dispersion forces

Answer: (3)
(Unit of VETRII IAS STUDY CIRCLE)
CHENNAI \| MADURAI
181. In which one of the following arrangements the given sequence is not strictly according to the properties indicated against it?
(1) $\mathrm{CO}_{2}<\mathrm{SiO}_{2}<\mathrm{SnO}_{2}<\mathrm{PbO}_{2}:$ Increasing oxidizing power
(2) $\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$

Increasing acidic strength
(3) $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$ Increasing pK_{a} values
(4) $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$: Increasing acidic character
Answer: (3)

2022

182. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): ICI is more reactive than I_{2}.
Reason (R): I-Cl bond is weaker than I-I bond. In the light of the above statements, choose the most appropriate answer from the options given below:
(1) (A) is correct but R is not correct
(2) (A) is not correct but (R) is correct
(3) Both (A) and (R) are correct and (R) is the correct explanation of (A).
(4) Both (A) and (R) are correct but (R) is not the correct explanation of (A).
Answer:(3)
183. Which of the following statement is not correct about diborane?
(1) The four terminal Hydrogen atoms and the two Boron atoms lie in one plane.
(2) Both the Boron atoms are $s p^{2}$ hybridised.
(3) There are two 3-centre-2-electron bonds.
(4) The four terminal B-H bonds are two centre two electron bonds.
Answer:(2)
184. Given below are two statements

Statement I

The boiling points of the following hydrides of group 16 elements increases in the order $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$

Statement II

The boiling points of these hydrides increase with increase in molar mass.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Statement I is correct but Statement II is incorrect
(2) Statement I is incorrect but Statement II is correct
(3) Both Statement I and Statement II are correct
(4) Both Statement I and Statement II are incorrect
Answer:(4)

D and f Block elements - C1208

2017

185. HgCl_{2} and I_{2} both when dissolved in water containing I^{-}ions the pair of species formed is
(1) $\mathrm{Hg}_{2} \mathrm{I}_{2} \mathrm{I}$
(2) $\mathrm{Hgl}_{2}, \mathrm{I}_{3}^{-}$
(3) $\mathrm{Hgl}_{2}, \mathrm{I}^{-}$
(4) $\mathrm{HgI}_{4}^{2-}, \mathrm{I}_{3}^{-}$

Answer: (4)
186. The reason for greater range of oxidation states in actinoids is attributed to
(1) $4 f$ and $5 d$ levels being close in energies
(2) The radioactive nature of actinoids
(3) Actinoid contraction
(4) $5 f, 6 d$ and $7 s$ levels having comparable energies
Answer: (4)

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI | MADURAI

2018
187. Which one of the following ions exhibits $d-d$ transition and paramagnetism as well?
(1) MnO_{4}^{-}
(2) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
(3) CrO_{4}^{2-}
(4) MnO_{4}^{2-}

Answer: (4)
188. Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the correct code:

Column I
a. Co^{3+}
b. Cr^{3+}
c. Fe^{3+}
iii. $\sqrt{3}$ B.M.
d. Ni^{2+}
iv. $\sqrt{24}$ B.M.
v. $\sqrt{15}$ B.M.

	a	b	c
(1)	iv	d	
(2)	i	ii	iii
(3)	iv	v	ii
(4)	iii	v	i
(i	ii

Answer: (3)
2019
189. Which of the following reactions are disproportionation reaction?
(a) $2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}^{0}$
(b) $3 \mathrm{MnO}_{4}^{2-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(c) $2 \mathrm{KMnO}_{4} \xrightarrow{\Delta} \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}$
(d) $2 \mathrm{MnO}_{4}^{-}+3 \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{MnO}_{2}+4 \mathrm{H}^{\oplus}$

Select the correct option from the following:
(1) (a) and (b) only
(2) (a), (b) and (c)
(3) (a), (c) and (d)
(4) (a) and (d) only

Answer: (1)
190. The manganate and permanganate ions are tetrahedral, due to
(1) The π-bonding involves overlap of p-orbitals of oxygen with p-orbitals of managanese
(2) There is no π - bonding
(3) The π - bonding involves overlap of p orbitals of oxygen with d-orbitals of manganese
(4) The π - bonding involves overlap of d orbitals of oxygen with d-orbitals of manganese
Answer: (4)
191. Which of the following species is not stable?
(1) $\left[\mathrm{SiF}_{6}\right]^{2-}$
(2) $\left[\mathrm{GeCl}_{6}\right]^{2-}$
(3) $\left[\mathrm{Sn}(\mathrm{OH})_{6}\right]^{2-}$
(4) $\left[\mathrm{SiCl}_{6}\right]^{2-}$

Answer: (4)

2020

192. Identify the incorrect statement from the following :
(1) The overall decrease in atomic and ionic radii from lanthanum to lutetium is called lanthanoid contraction
(2) Zirconium and Hafnium have identical radii of 160 pm and 159 pm , respectively as a consequence of lanthanoid contraction
(3) Lanthanoids reveal only +3 oxidation state
(4) The lanthanoid ions other than the f^{0} type and the f^{14} type are all paramagnetic
Answer:(3)
193. Match the following aspects with the respective metal.

Aspects

(a) The metal which
reveals a maximum
number of oxidation states
(b) The metal
(ii) Copper
(i) Scandium

Metal

 although placedVETRII NEET GATEWAY

Academy for NEET Coaching
(Unit of VETRII IAS STUDY CIRCLE)
CHENNAI \| MADURAI

in 3d block is considered not as a transition element
(c) The metal which does not exhibit variable oxidation states
(d) The metal which
(iv) Zinc
in +1 oxidation state in aqueous solution undergoes disproportionation
Select the correct option :
(1) (a)-(ii) (b)-(iv) (c)-(i) (d)-(iii)
(2) (a)-(i) (b)-(iv) (c)-(ii) (d)-(iii)
(3) (a)-(iii) (b)-(iv) (c)-(i) (d)-(ii)
(4) (a)-(iii) (b)-(i) (c)-(iv) (d)-(ii)

Answer:(3)

2021

194. $\mathrm{Zr}(\mathrm{Z}=40)$ and $\mathrm{Hf}(\mathrm{Z}=72)$ have similar atomic and ionic radii beause of:
(1) Having similar chemical properties
(2) Belonging to same group
(3) Diagonal relationship
(4) Lanthanoid contraction

Answer: (4)
195. The incorrect statement among the following is:
(1) Actinoids are highly reactive metals, especially when finely divided.
(2) Actinoid contraction is greater for element to element than lanthanoid contraction
(3) Most of the trivalent Lanthanoid ions are colorless in the solid state
(4) Lanthanoids are good conductors of heat and electricity.
Answer: (3)
196. Match List - I with List - II.

List - I

(a) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
(i) 5.92 BM
(b) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(ii) 0 BM
(c) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{2+}$
(iii) 4.90 BM
(d) BF_{3}
(iv) 1.73 BM

Choose the correct answer from the options given below:
(1) (a) - (iv), (b) - (i), (c) - (ii), (d) - (iii)
(2) (a) - (iv), (b) - (ii), (c) - (i), (d) - (iii)
(3) (a) - (ii), (b) - (iv), (c) - (iii), (d) - (i)
(4) (a) - (i), (b) - (iii), (c) - (iv), (d) - (ii)

Answer: (1)

2022

197. Gadolinium has a low value of third ionisation enthalpy because of
(1) high electronegativity
(2) high basic character
(3) small size
(4) high exchange enthalpy

Answer:(4)
198. In the neutral or faintly alkaline medium, KMnO 4 oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from
(1) +7 to +3
(2) +6 to +5
(3) +7 to +4
(4) +6 to +4

Answer:(3)

COORDINATION COMPOUNDS - C1209

 2017199. Correct increasing order for the wavelengths of absorption in the visible region for the complexes of Co^{3+} is
(1) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(2) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(3) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(4) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$

Answer: (2)

VETRII NEET GATEWAY

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI \| MADURAI

200. Pick out the correct statement with respect $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$
(1) It is $d s p^{2}$ hybridised and square planar
(2) It is $s p^{3} d^{R}$ hybridised and octahedral
(3) It is $s p^{3} d^{2}$ hybridised and tetrahedral
(4) It is $d^{2} s p^{3}$ hybridised and octahedral

Answer: (4)
201. Which of the following oxides is most acidic in nature?
(1) BaO
(2) BeO
(3) MgO
(4) CaO

Answer: (2)

2018

202. Iron carbonyl, $\mathrm{Fe}(\mathrm{CO})_{5}$ is
(1) trinuclear
(2) mononuclear
(3) tetranuclear
(4) dinuclear

Answer: (2)
203. The type of isomerism shown by the complex [CoCl2(en)2] is
(1) Ionization isomerism
(2) Coordination isomerism
(3) Geometrical isomerism
(4) Linkage isomerism

Answer: (3)
204. The geometry and magnetic behaviour of the complex $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ are
(1) square planar geometry and paramagnetic
(2) tetrahedral geometry and diamagnetic
(3) square planar geometry and diamagnetic
(4) tetrahedral geometry and paramagnetic

Answer: (2)

2019
205. What is the correct electronic configuration of the central atom in $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ based on crystal field theory?
(1) $t_{2 g}^{4} e_{g}^{2}$
(2) $t_{2 g}^{6} e_{g}^{0}$
(3) $e^{3} t_{2}^{3}$
(4) $e^{3} t_{2}^{2}$

Answer: (2)

2021
206. Ethylene diaminetetraacetate (EDTA) ion is:
(1) Tridentate ligand with three " N " donor atoms
(2) Hexadentate ligand with four " O " and two " N " donor atoms
(3) Unidentate ligand
(4) Bidentate ligand with two " N " donor atoms

Answer: (2)
207. Identify the incorrect statement from the following.
(1) In an atom, all the five $3 d$ orbitals are equal in energy in free state.
(2) The shapes of $d_{x y}, d_{y z}$ and $d_{z x}$ orbitals are similar to each other; and $d_{x^{2}-y^{2}}$ and $d_{z^{2}}$ are similar to each other.
(3) All the five $5 d$ orbitals are different in size when compared to the respective $4 d$ orbitals.
(4) All the five $4 d$ orbitals have shapes similar to the respective $3 d$ orbitals.

Answer:(2)

208. The order of energy absorbed which is responsible for the color of complexes
(A) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{en})_{2}\right]^{2+}$
(B) $\left[\mathrm{Ni}_{\left(\mathrm{H}_{2} \mathrm{O}\right)}^{4}(\mathrm{en})\right]^{2+}$ and
(C) $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}$
is
(1) $($ C $)>($ A $)>($ B $)$
(2) (B) $>$ (A) $>$ (C)
(3) $(\mathrm{A})>$ (B) $>$ (C)
(4) $($ C $)>($ B $)>($ A $)$

Answer:(1)

Academy for NEET Coaching
(Unit of VETRII IAS STUDY CIRCLE)
CHENNAI | MADURAI

Haloalkanes and Haloarenes - C1210 2017
209. An example of a sigma bonded organometallic compound is
(1) Cobaltocene
(2) Ruthenocene
(3) Grignard's reagent
(4) Ferrocene

Ans: (3)

2019

210. Among the following, the reaction that proceeds through an electrophilic substitution, is:
(1)

(2)

(3)

(4)

Answer: (2)
211. An alkene " A " on reaction with O_{3} and $\mathrm{Zn}-\mathrm{H}_{2} \mathrm{O}$ gives propanone and ethanal in equimolar ratio. Addition of HCl to alkene " A " gives " B " as the major product. The structure of product " B " is:
(1)

(2)

(3)

(4)

Answer: (3)

2020
212. Which of the following will NOT undergo $\mathrm{S}_{\mathrm{N}} 1$ reaction with $\bar{O} \mathrm{H}$?
(1)

(2) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Cl}$
(3) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$
(4) $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$

Answer:(4)

2021
213. The correct sequence of bond enthalpy of ' C X^{\prime} bond is:
(1) $\mathrm{CH}_{3}-\mathrm{Cl}>\mathrm{CH}_{3}-\mathrm{F}>\mathrm{CH}_{3}-\mathrm{Br}>\mathrm{CH}_{3}-$ I
(2) $\mathrm{CH}_{3}-\mathrm{F}<\mathrm{CH}_{3}-\mathrm{Cl}<\mathrm{CH}_{3}-\mathrm{Br}<\mathrm{CH}_{3}-$ I
(3) $\mathrm{CH}_{3}-\mathrm{F}>\mathrm{CH}_{3}-\mathrm{Cl}>\mathrm{CH}_{3}-\mathrm{Br}>\mathrm{CH}_{3}-\mathrm{I}$
(4) $\mathrm{CH}_{3}-\mathrm{F}<\mathrm{CH}_{3}-\mathrm{Cl}>\mathrm{CH}_{3}-\mathrm{Br}>\mathrm{CH}_{3}-\mathrm{I}$

Answer: (3)
214. The major product formed in dehydrohalogenation reaction of 2-Bromo pentane is Pent-2-ene. This product formation is based on?
(1) Huckel's Rule
(2) Saytzeff's Rule
(3) Hund's Rule
(4) Hofmann Rule

Answer: (2)
2022
215. Which of the following sequence of reactions is suitable to synthesize chlorobenzene?
(1)

(2)

(3) Benzene, Cl_{2}, anhydrous FeCl_{3}
(4) Phenol, $\mathrm{NaNO}_{2}, \mathrm{HCl}, \mathrm{CuCl}$

Answer:(3)

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI \| MADURAI

ALCHOLS, PHENOLS AND ETHERS C1211
 2017

216. Consider the reactions:

Identify $\mathrm{A}, \mathrm{X}, \mathrm{Y}$ and Z

(1) A-Ethanol, X-Acetaldehyde, Y-Butanone, Z-Hydrazone
(2) A-Methoxymethane, X-Ethanoic acid, YAcetate ion, Z-Hydrazine
(3) A-Methoxymethane, X- Ethanol, YEthanoic acid, Z-Semicarbazide
(4) A-Ethanal, X-Ethanol, Y-But-2-enal, ZSemicarbazone
Answer:(4)
217. Which one is the most acidic compound?
(1)

(2)

(3)

(4)

Answer:(4)

218. The compound A on treatment with $N a$ gives B, and with $P C I_{5}$, gives C. B and C react together to give diethyl ether. A, B and C are in the order
(1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(2) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$
(3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
(4) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$

Answer:(3)
219. In the reaction

electrophile involved is
(1) dichloromethyl anion $\left({ }_{C} \mathrm{HCl}_{2}\right)$
(2) formyl cation $\left({ }_{C}^{\oplus} H O\right) \mathrm{C}$
(3) dichloromethyl cation $\left({ }_{C}^{\oplus} \mathrm{HCl}_{2}\right)$
(4) dichlorocarbene (: HCl_{2})

Answer:(3)

220. Compound $A, C_{8} H_{1 O} O$, is found to react with NaOl (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell. A and Y are respectively
(1)

(2)

(3)

(4)

Answer:(4)
221. Identify the major products P, Q and R in the following sequence of reactions:

(1)

(3)

(4)

Answer:(3)
223. Which of the following substituted phenols is the strongest acid?
(1)

(2)

(3)

(4)

Answer:(2)
2020
222. The structure of intermediate A in the following reaction, is :

(1)

(2)

(3)

Answer:(2)
224. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \frac{\mathrm{~B}_{2} \mathrm{H}_{6}}{\mathrm{H}_{2} O, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{OH}^{-}} \mathrm{Z}$. What is Z ?
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{3}$

OH
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$

Answer:(2)
2021
225. What is the IUPAC name of the organic compound formed in the following chemical reaction?

Acetone $\xrightarrow[\text { (i) } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr} \text {, dryEther }]{\text { (i) } \mathrm{H}^{+}}$Product
(1) 2-methylbutan-2-ol
(2) 2-methylpropan-2-ol
(3) pentan-2-ol
(4) pentan-3-ol

Answer: (1)

2022

226. Given below are two statements

Statement I:

The acidic strength of monosubstituted nitrophenol is higher than phenol because of electron withdrawing nitro group.

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI | MADURAI

Statement II:

α-nitrophenol, m-nitrophenol and p-nitrophenol will have same acidic strength as they have one nitro group attached to the phenolic ring. In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Statement I is correct but Statement II is incorrect.
(2) Statement I is incorrect but Statement II is correct.
(3) Both Statement I and Statement II are correct.
(4) Both Statement I and Statement II are incorrect.
Answer:(1)
227. Given below are two statements:

Statement I:

In Lucas test, primary, secondary and tertiary alcohols are distinguished on the basis of their reactivity with conc. $\mathrm{HCl}+\mathrm{ZnCl}_{2}$, known as Lucas Reagent.

Statement II:

Primary alcohols are most reactive and immediately produce turbidity at room temperature on reaction with Lucas Reagent. In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Statement I is correct but Statement II is incorrect
(2) Statement I is incorrect but Statement II is correct
(3) Both Statement I and Statement II are correct
(4) Both Statement I and Statement II are incorrect
Answer:(1)

ALDEHYDES,KETONES AND CARBOXYLIC ACIDS - C1212

2017
228. The IUPAC name of the compound

(1) 3-keto-2-methylhex-5-enal
(2) 3-keto-2-methylhex-4-enal
(3) 5-formylhex-2-en-3-one
(4) 5-methyl-4-oxohex-2-en-5-al

Answer: (2)
229. Of the following, which is the product formed when cyclohexanone undergoes aldol condensation followed by heating?
(1)

(2)
(3)

(4)

Answer: (3)

Academy for NEET Coaching
(Unit of VETRII IAS STUDY CIRCLE)
CHENNAI | MADURAI
2018
230. Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their
(1) more extensive association of carboxylic acid via van my Waals force of attraction
(2) formation of carboxylate ion
(3) formation of intramolecular H -bonding
(4) formation of intermolecular H -bonding

Answer: (1)

2020
231. Identify compound (A) in the following reaction:

(1) Benzoic acid
(2) Benzoyl chloride
(3) Toluene
(4) Acetophenone

Answer: (2)
232. Which of the following substituted phenols is the strongest acid?
(1)

(2)

(3)

Answer: (1)
233. Which of the following compound is most reactive in electrophilic aromatic substitution?
(1)

(2)

(3)

(4)

Answer: (1)
234. Match List - I with List - II
(a)

(i) Hell-Volhard-Zelinsky reaction
(b)

$\mathrm{NaOX} \longrightarrow$
(ii) Gattermann-Koch
(c) $\mathrm{R}-\mathrm{CH}_{2}-\mathrm{OH}$ $+\mathrm{R}^{\prime} \mathrm{COOH}$ $\xrightarrow{\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}}$

$$
\begin{aligned}
& \text { (d) } \\
& \substack{\text { (i) } \mathrm{X} / \mathrm{Red} \mathrm{P} P \\
\text { (ii) } \mathrm{H}_{2} \mathrm{O}} \\
& \mathrm{CH}_{2} \mathrm{COOH}
\end{aligned} \quad \text { (iv) Esterification }
$$

Select the correct option :
(1) (a)-(iii) (b)-(i) (c)-(iv) (d)-(ii)
(2) (a)-(ii) (b)-(iii) (c)-(iv) (d)-(i)00
(3) (a)-ii, (b)-iii, (c)-iv, (d)-i
(4) (a)-(iv) (b)-(i) (c)-(ii) (d)-(iii)

Answer (3)

235. Consider the above reaction and identify the missing reagent/chemical.
$\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Na}^{+} \xrightarrow{\mathrm{NaOH},+?} \mathrm{CH}_{3} \mathrm{CH}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3}$.
(1) DIBAL-H
(2) $\mathrm{B}_{2} \mathrm{H}_{6}$
(3) Red Phosphorus
(4) CaO

Answer: (4)
237. The product formed from the following reaction sequence is
(1)

(3)

(4)

Answer: (4)
238. Which one of the following is not formed when acetone reacts with 2-pentanone in the presence of dilute NaOH followed by heating?
(1)

(2)

(3)

(4)

Answer: (4)

VETRII NEET GATEWAY

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI | MADURAI

239. Match List-I with List-II.

List - I
(Products formed)

List - II
(Reaction of carbonyl compound with)
(a) Cyanohydrin
(i) $\mathrm{NH}_{2} \mathrm{OH}$
(b) Acetal
(c) Schiff's base
(d) Oxime
(ii) RNH_{2}
(iii) alcohol
(iv) HCN

Choose the correct answer from the options given below
(1) (a) - (i), (b) - (iii), (c) - (ii), (d) - (iv)
(2) (a) - (iv), (b) - (iii), (c) - (ii), (d) - (i)
(3) (a) - (iii), (b) - (iv), (c) - (ii), (d) - (i)
(4) (a) - (ii), (b) - (iii), (c) - (iv), (d) - (i)

Answer: (2)
240. $\mathrm{RMg}_{\mathrm{g}} \mathrm{X}+\mathrm{CO}_{2} \quad \mathrm{Y} \quad \mathrm{RCOOH}$ What is Y in the above reaction?
(1) $\mathrm{RCOO}-\mathrm{X}^{+}$
(2) $(\mathrm{RCOO})_{2} \mathrm{Mg}$
(3) $\mathrm{RCOO}-\mathrm{Mg}^{+} \mathrm{X}$
(4) R3CO-Mg+X

Answer: (3)

Organic Compound and Containing

Nitrogen - C1213
2019
241. The correct order of the basic strength of methyl substituted amines in aqueous solution is :
(1) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
(2) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}^{2} \mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(3) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\mathrm{CH}_{3} \mathrm{NH}_{2}$
(4) $\mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$

Answer: (1)

2021
242. Identify the compound that will react with Hinsberg's reagent to give a solid which dissolves in alkali.
(1)

(2)

(3)

(4)

Answer (4)
243. The reagent ' R ' in the given sequence of chemical reaction is:
கீழ்கண்்ட வினைத்ததாடரில் பயன்படும் 'R' என்ற வினை கரணி:

(1) $\mathrm{CuCN} / \mathrm{KCN}$
(2) $\mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(4) HI

Answer (3)

2022

244. Given below are two statements

Statement I: Primary aliphatic amines react with HNO_{2} to give unstable diazonium salts.
Statement II: Primary aromatic amines react with HNO_{2} to form diazonium salts which are stable even above 300 K . In the light of the above statements, choose the most appropriate answer from the options given below
(1) Statement I is correct but Statement II is incorrect.

VETRII NEET GATEWAY
Academy for NEET Coaching
(Unit of VETRII IAS STUDY CIRCLE)
CHENNAI \| MADURAI
(2) Statement I is incorrect but Statement II is correct.
(3) Both Statement I and Statement II are correct.
(4) Both Statement I and Statement II are incorrect.

Answer: (1)

2020

Reaction of propanamide with ethanolic sodium hydroxide and bromine will give
(1) Aniline
(2) Ethylamine
(3) Methylamine
(4) Propylamine

Answer: (2)

Biomolecules - C1214
2017
245. Which of the following statements is not correct?
(1) Denaturation makes the proteins more active
(2) Insulin maintains sugar level in the blood of a human body
(3) Ovalbumin is a simple food reserve in eggwhite
(4) Blood proteins thrombin and fibrinogen are involved in blood clotting
Answer: (1)

2018

246. The difference between amylose and amylopectin is
(1) Amylopectin have $1 \rightarrow 4 \alpha$-linkage and $1 \rightarrow 6$ α-linkage
(2) Amylose have $1 \rightarrow 4 \alpha$-linkage and $1 \rightarrow 6 \beta$ linkage
(3) Amylopectin have $1 \rightarrow 4 \alpha$-linkage and $1 \rightarrow 6$ β-linkage
(4) Amylose is made up of glucose and galactose
247. Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is
(1) $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
(2) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(3) $\mathrm{CH}=\mathrm{CH}$
(4) CH_{4}

Answer: (4)
248. The compound $\mathrm{C}_{7} \mathrm{H}_{8}$ undergoes the following reactions:

The product ' C ' is
(1) 3-bromo-2,4,6-trichlorotoluene
(2) o-bromotoluene
(3) m-bromotoluene
(4) p-bromotoluene

Answer: (3)
249. Which of the following compounds can form a zwitterion?
(1) Benzoic acid
(2) Acetanilide
(3) Aniline
(4) Glycine

Answer: (4)

2019

250. The non-essential amino acid among the following is :
(1) valine
(2) leucine
(3) alanine
(4) lysine

Answer: (3)

Answer: (1)

VETRII NEET GATEWAY

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI \| MADURAI

251. The major product of the following reaction is:

Answer: (2)
2020
252. Deficiency of which vitamin causes osteomalacia?
(1) Vitamin E
(2) Vitamin A
(3) Vitamin D
(4) Vitamin K

Answer: (3)
253. The reaction of concentrated sulphuric acid with carbohydrates $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ is an example of
(1) Sulphonation
(2) Dehydration
(3) Oxidation
(4) Reduction

Answer: (2)
254. Which of the following statement is not true about glucose?
(1) It is an aldopentose.
(2) It is an aldohexose.
(3) It contains five hydroxyl groups.
(4) It is a reducing sugar.

Answer: (3)

2021
255. The RBC efficiency is deficiency disease of:
(1) Vitamin B_{2}
(2) Vitamin B12
(3) Vitamin B_{6}
(4) Vitamin B_{1}

Answer: (2)

Polymers - C1215
2018
256. Regarding cross-linked or network polymers, which of the following statements is incorrect?
(1) Examples are bakelite and melamine.
(2) They are formed from bi- and tri-functional
(3) They contain covalent bonds between various linear polymer chains.
(4) They contain strong covalent bonds in their polymer chains.
Answer: (3)
2019
257. The biodegradable polymer is:
(1) nylon-6, 6
(2) nylon 2-nylon 6
(3) nylon-6
(4) Buna-S

Answer: (2)

2020
258. Which of the following statement is correct about Bakelite?
(1) It is a linear polymer
(2) It is a cross linked polymer
(3) It is an addition polymer
(4) It is a branched chain polymer

Answer: (2)

2021

259. Which one of the following polymers is prepared by addition polymerisation?
(1) Dacron
(2) Teflon
(3) Nylon-66
(4) Novolac

Answer: (2)

Chemistry in Everyday Life - C1216
 2017

260. Mixture of chloroxylenol and terpineol acts as
(1) Antibiotic
(2) Analgesic
(3) Antiseptic
(4) Antipyretic

Answer: (3)

VETRII NEET GATEWAY

Academy for NEET Coaching
 (Unit of VETRII IAS STUDY CIRCLE)
 CHENNAI | MADURAI

2022
2021
261. Which statement regarding polymers is not correct?
(1) Thermoplastic polymers are capable of repeatedly softening and hardening on heating and cooling respectively
(2) Thermosetting polymers are reusable
(3) Elastomers have polymer chains held together by weak intermolecular forces
(4) Fibers possess high tensile strength

Answer: (2)

2019

262. Among the following, the narrow spectrum antibiotic is:
(1) penicillin G
(2) ampicillin
(3) amoxycillin
(4) chloramphenicol

Answer: (1)
263. The method used to remove temporary hardness of water is:
(1) Calgon's method
(2) Clark's method
(3) lon-exchange method
(4) Synthetic resins method

Answer: (2)

2020

264. Which of the following is not true about chloramphenicol?
(1) It is bacteriostatic.
(2) It inhibits the growth of only gram positive bacteria.
(3) It is a broad spectrum antibiotic.
(4) It is not bactericidal.

Answer: (2)
265. Given below are two statements:

Statement I: Aspirin and Paracetamol belong to the class of narcotic analgesics.
Statement II: Morphine and Heroin are nonnarcotic analgesics.
In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I is incorrect but Statement II is true.
(2) Both Statement I and Statement II are true
(3) Both Statement I and Statement II are false
(4) Statement I is correct but Statement II is false
Answer: (3)

2022
266. Match List-I with List-II.

List-I
(Drug class)
(a) Antacids
(i) Salvarsan
(b) Antihistamines
(ii) Morphine
(c) Analgesics
(iii) Cimetidine
(d) Antimicrobials
(iv) Seldane

Choose the correct answer from the options given below :
(1) (a) - (i), (b) - (iv), (c) - (ii), (d) - (iii)
(2) (a) - (iv), (b) - (iii), (c) - (i), (d) - (ii)
(3) (a) - (iii), (b) - (ii), (c) - (iv), (d) - (i)
(4) (a) - (iii), (b) - (iv), (c) - (ii), (d) - (i)

Answer: (4)

